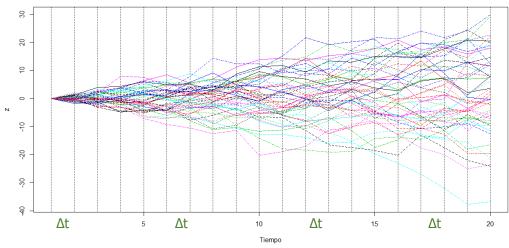
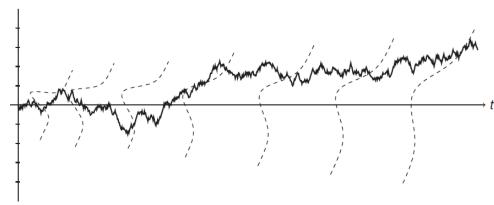
Profesor: Miguel Jiménez

Proceso de Wiener

La variable z sigue un proceso de Wiener





Propiedades:

- 1. Proceso de Markov.
- 2. Incrementos independientes:
 - Los Δz son independientes.
- 3. Los Δz en cada Δt tienen distribución normal.
 - Varianza aumenta linealmente con Δt

$$\Delta z = \varepsilon \sqrt{\Delta t}$$

- Los ε_t no están autocorrelacionados.
- No estacionario, la varianza tenderá a infinito.

Proceso de Wiener

$$\Delta t$$
 Δt Δt Δt Δt Δt Δt

Variación:
$$z(s + T) - z(s) = \sum_{i=1}^{n} \varepsilon_i \sqrt{\Delta t}$$

Hay n intervalos de tiempo, Δt .

$$n = \frac{T}{\Lambda t}$$

Como $\varepsilon \sim N(0,1)$, entonces: $z(s + T) - z(s) \sim N(0,T)$

$$Varianza = T = n\Delta t$$

Si $\Delta t \rightarrow 0$, el incremento en el proceso de Wiener, dz, es continuo y es igual a:

$$dz = \epsilon_t \sqrt{dt}$$

Varianza aumenta linealmente con Δt

Movimiento Browniano con tendencia o *drift*:

$$dx = adt + bdz$$

a y b son constantes.

 $\epsilon \sim N(0,1)$

Drift a: Tasa de tendencia esperada de dx.

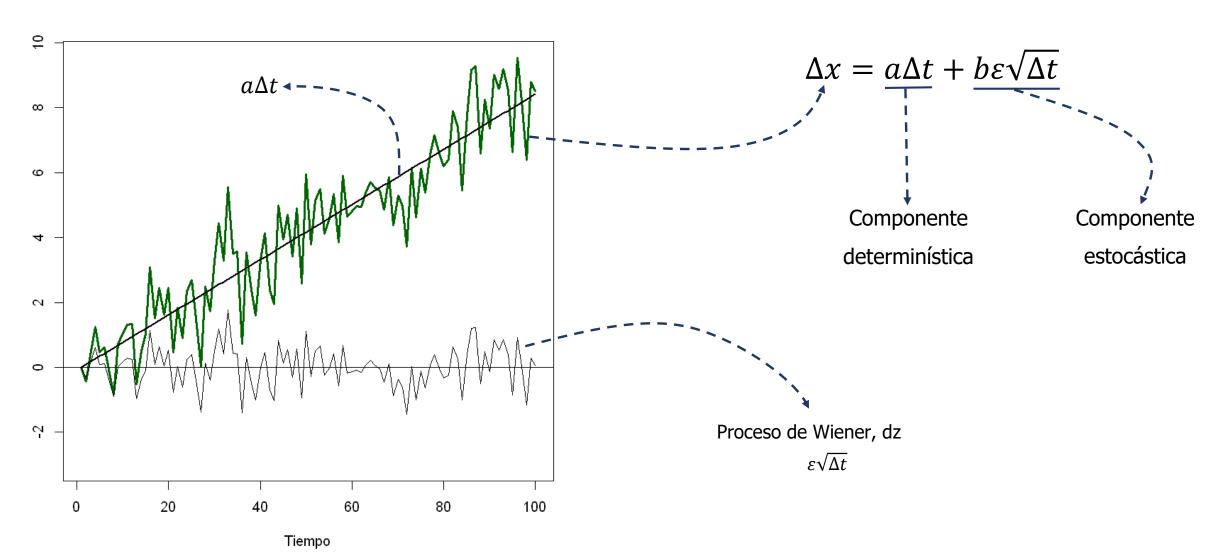
bdz: Ruido. La variabilidad es b veces un proceso de Wiener.

Para un intervalo pequeño de tiempo, Δt , la variación de x, Δx , es:

$$\Delta x = a\Delta t + b\varepsilon\sqrt{\Delta t}$$

$$\Delta x \sim N(a\Delta t, b^2 \Delta t)$$

Movimiento Browniano con tendencia o drift:



Movimiento Browniano con tendencia o *drift*:

Precios de las acciones:

Los precios de las acciones no siguen una distribución Normal, porque el precio nunca podrá ser inferior a cero.

Supuesto: Los cambios logarítmicos de los precios de las acciones siguen una distribución Normal.

Implica modelar el logaritmo del precio como un proceso de Wiener.

ln(S)

Para un intervalo de tiempo, Δt y acción que no paga dividendos:

$$\frac{\Delta S}{S} = \mu \Delta t + \sigma \varepsilon \sqrt{\Delta t}$$

$$\Delta S = \mu S \Delta t + \sigma S \varepsilon \sqrt{\Delta t}$$

S: Precio de la acción.

 ΔS : Cambio en el precio de la acción.

 μ : Rendimiento esperado de la acción o *drift*.

 σ : Volatilidad de la acción.

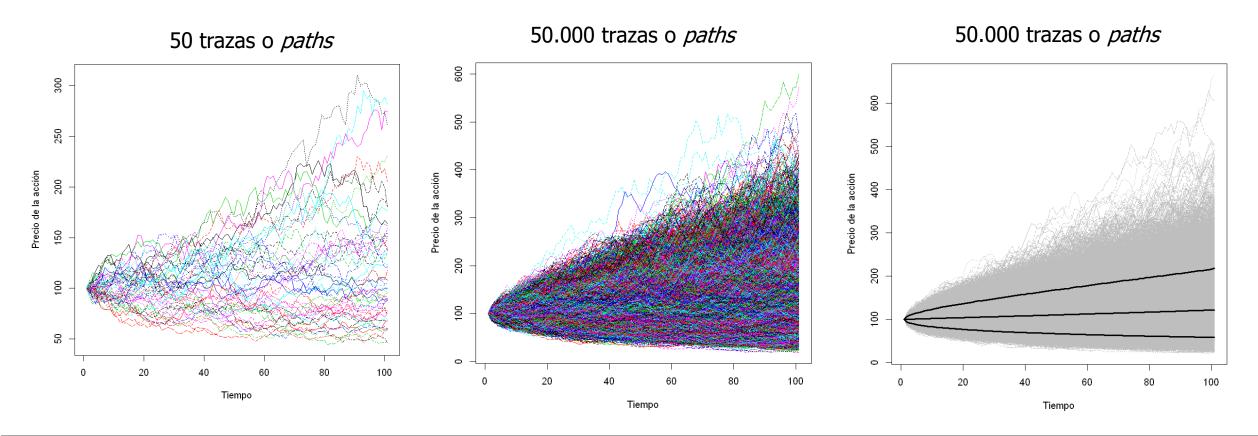
$$\frac{\Delta S}{S} \sim N(\mu \Delta t, \sigma^2 \Delta t)$$

Movimiento Browniano con tendencia o *drift*:

$$\frac{\Delta S}{S} = \mu \Delta t + \sigma \varepsilon \sqrt{\Delta t} \qquad S = \mu S \Delta t + \sigma S \varepsilon \sqrt{\Delta t}$$

$$S = \mu S \Delta t + \sigma S \varepsilon \sqrt{\Delta t}$$

S: \$100, μ : 0,2% continua diario, σ : 4% diario.

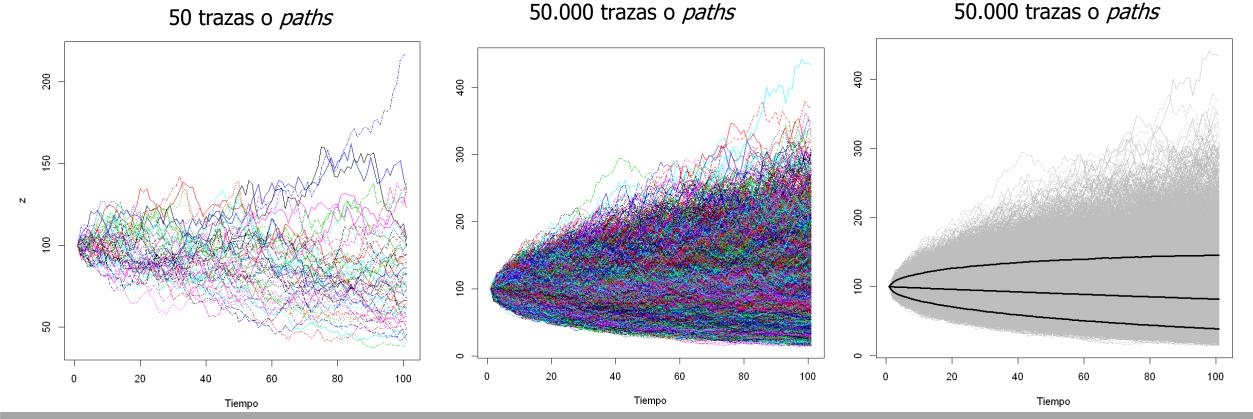


Movimiento Browniano con tendencia o *drift*:

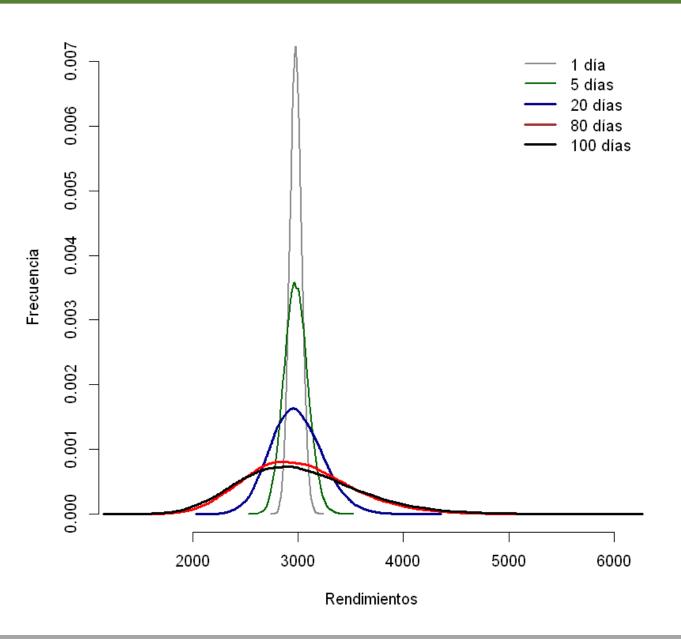
$$\frac{\Delta S}{S} = \mu \Delta t + \sigma \varepsilon \sqrt{\Delta t}$$

$$S = \mu S \Delta t + \sigma S \varepsilon \sqrt{\Delta t}$$

 $\frac{\Delta S}{S} = \mu \Delta t + \sigma \varepsilon \sqrt{\Delta t} \qquad S = \mu S \Delta t + \sigma S \varepsilon \sqrt{\Delta t} \qquad S: \$100, \ \mu: -0.2\% \text{ continua diario, } \sigma: 4\% \text{ diario.}$



Docente: Luis Miguel Jiménez Gómez



No se puede derivar una ecuación estocástica de tiempo continuo que depende de una o dos variables (como la del Movimiento Browniano) utilizando la regla de la cadena, porque en cualquier punto de la función a derivar el comportamiento puede ser creciente o decreciente.

Se debe utilizar otro método: El lema de Itô, que es la versión estocástica de la regla de la cadena.

Si una variable x sigue un proceso de Wiener, dx = adt + bdz, y G es una función de x y t, entonces:

$$dG = \left(\frac{\partial G}{\partial x}a + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial x^2}b^2\right)dt + \frac{\partial G}{\partial x}bdz$$

$$Drift \qquad Varianza: \left(\frac{\partial G}{\partial x}\right)^2b^2$$

La función G es continua y diferenciable en cualquiera de sus puntos.

$$dx = adt + bdz$$

$$dG = \left(\frac{\partial G}{\partial x}a + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial x^2}b^2\right)dt + \frac{\partial G}{\partial x}bdz$$

Para modelar el comportamiento de una acción que no paga dividendos: $ds = \mu s dt + \sigma s dt$

$$a = \mu s$$

$$b = \sigma s$$

Sustituyendo:

$$dG = \left(\frac{\partial G}{\partial s}\mu s + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial s^2}\sigma^2 s^2\right)dt + \frac{\partial G}{\partial s}\sigma s dz$$

$$dG = \left(\frac{\partial G}{\partial s}\mu s + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial s^2}\sigma^2 s^2\right)dt + \frac{\partial G}{\partial s}\sigma s dz$$
Si $G = \ln[s(t)]$

Derivando parcialmente a G con respecto a s, t y s^2 , tendremos:

$$\frac{\partial G}{\partial s} = \frac{1}{s}; \quad \frac{\partial G}{\partial t} = 0; \quad \frac{\partial^2 G}{\partial s^2} = -\frac{1}{s^2}$$

$$dG = \left(\frac{1}{s}\mu s + \frac{1}{2}\left(-\frac{1}{s^2}\right)\sigma^2 s^2\right)dt + \frac{1}{s}\sigma s dz$$

$$dG = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma dz$$

$$Drift \qquad \text{Volatilidad}$$

Como
$$G = \ln[s(t)]$$

$$d\ln[s(t)] = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma dz$$

$$\int_{t=0}^{T} d\ln[s(t)] = \int_{t=0}^{T} \left(\mu - \frac{\sigma^2}{2}\right) dt + \int_{t=0}^{T} \sigma dz$$

$$ln[s(T)] - ln[s(0)] = \left(\mu - \frac{\sigma^2}{2}\right)T + \sigma dz$$

$$ln\left[\frac{s(T)}{s(0)}\right] = \left(\mu - \frac{\sigma^2}{2}\right)T + \sigma dz$$

$$s(T) = s(0)e^{\left[\left(\mu - \frac{\sigma^2}{2}\right)T + \sigma dz\right]}$$

$$s(T) = s(0)e^{\left[\left(\mu - \frac{\sigma^2}{2}\right)T + \sigma dz\right]}$$

Para un intervalo de tiempo pequeño, Δt :

$$S_{t+\Delta t} = S_t e^{\left[\left(\mu - \frac{\sigma^2}{2}\right)\Delta t + \sigma \Delta z\right]}$$

Como $\Delta z = \varepsilon \sqrt{\Delta t}$ porque es un proceso de Wiener, entonces:

$$S_{t+\Delta t} = S_t e^{\left[\left(\mu - \frac{\sigma^2}{2}\right)\Delta t + \sigma \varepsilon \sqrt{\Delta t}\right]}$$

La fórmula también es conocida como Movimiento Browniano Geométrico (MBG).

Con este modelo el precio nunca será negativo.

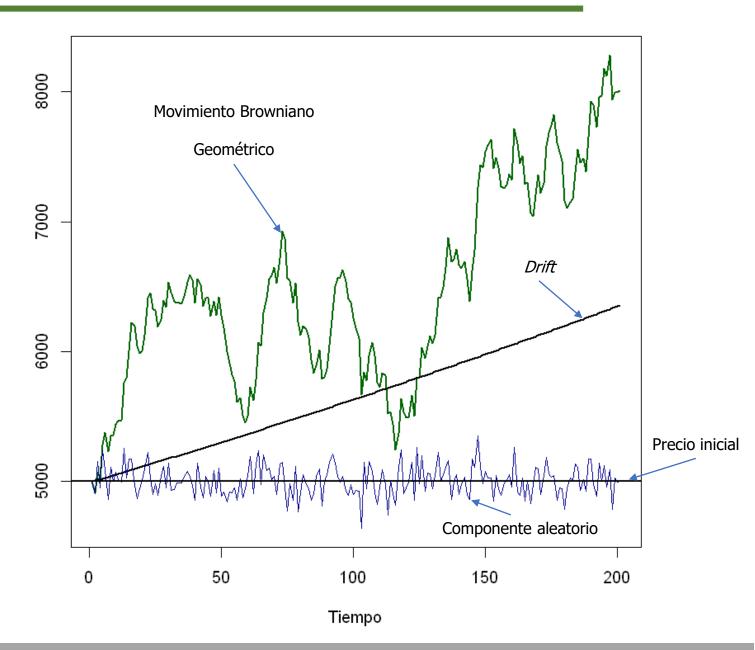
S: \$5000

 μ : 0,14% continua diario

 σ : 1,8% diario.

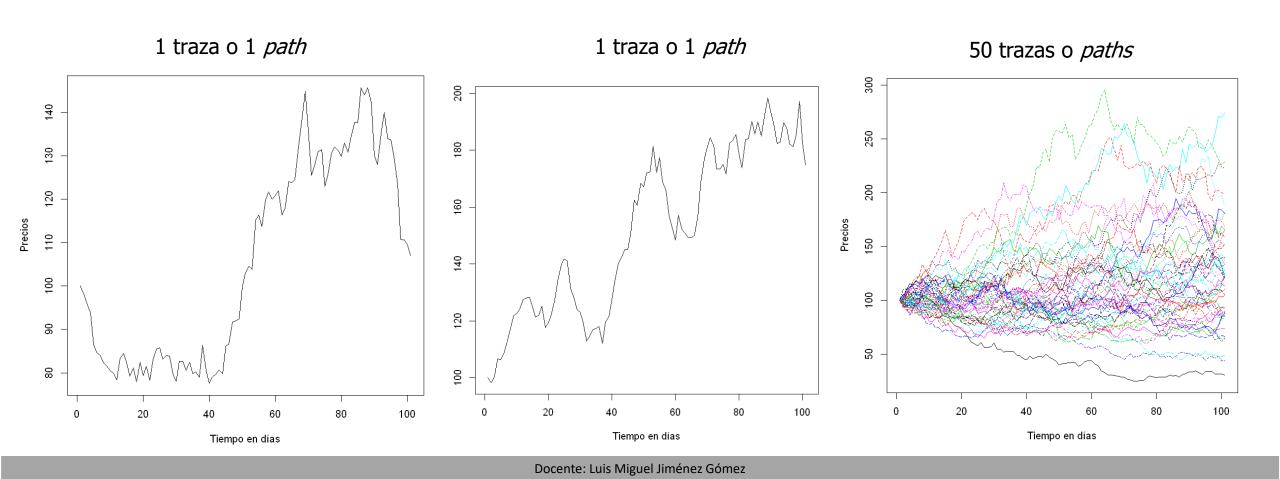
 $\Delta t = 1$

n = 200

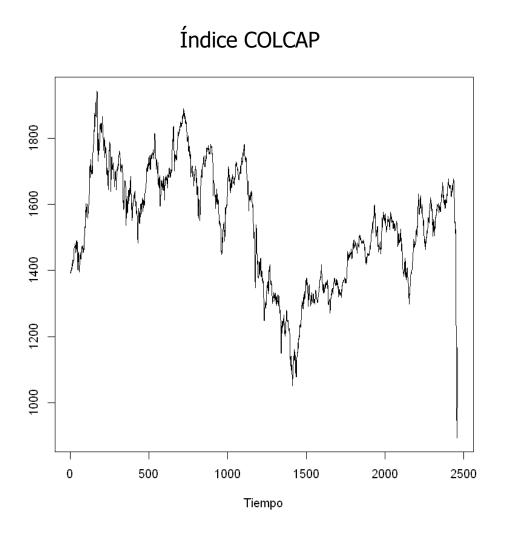


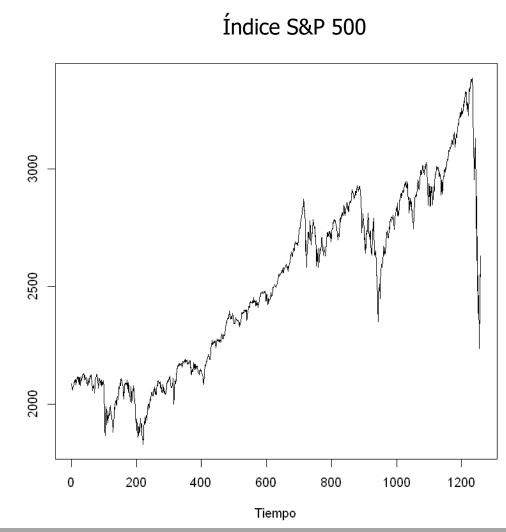
$$S_{t+\Delta t} = S_t e^{\left[\left(\mu - \frac{\sigma^2}{2}\right)\Delta t + \sigma \varepsilon \sqrt{\Delta t}\right]}$$

S: \$100, μ : 0,2% continua diario, σ : 4% diario, $\Delta t = 1$



Comportamiento de los precios reales





Referencias

Dobrow, R. P. (2016). *Introduction to stochastic processes with R* (1th ed.). Hoboken, New Jersey: John Wiley & Sons.

Hull, J. (2012). Options, futures, and other derivatives (8th ed.). Boston: Pearson Education.

Mascareñas, J. (2018). Procesos Estocásticos: Introducción. Disponible en:

SSRN: https://ssrn.com/abstract=2316024 or https://dx.doi.org/10.2139/ssrn.2316024

Gracias

Profesor: Miguel Jiménez