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A B S T R A C T

The COVID-19 pandemic has significantly strained healthcare systems, highlighting the need for early diagnosis 
to isolate positive cases and prevent the spread. This study combines machine learning, deep learning, and 
transfer learning techniques to automatically diagnose COVID-19 and other pulmonary conditions from radio-
graphic images. First, we used Convolutional Neural Networks (CNNs) and a Support Vector Machine (SVM) 
classifier on a dataset of 21,165 chest X-ray images. Our model achieved an accuracy of 86.18 %. This approach 
aids medical experts in rapidly and accurateky detecting lung diseases. Next, we applied transfer learning using 
ResNet18 combined with SVM on a dataset comprising normal, COVID-19, lung opacity, and viral pneumonia 
images. This model outperformed traditional methods, with classification rates of 98 % with Stochastic Gradient 
Descent (SGD), 97 % with Adam, 96 % with RMSProp, and 94 % with Adagrad optimizers. Additionally, we 
incorporated two additional transfer learning models, EfficientNet-CNN and Xception-CNN, which achieved 
classification accuracies of 99.20 % and 98.80 %, respectively. However, we observed limitations in dataset 
diversity and representativeness, which may affect model generalization. Future work will focus on imple-
menting advanced data augmentation techniques and collaborations with medical experts to enhance model 
performance.This research demonstrates the potential of cutting-edge deep learning techniques to improve 
diagnostic accuracy and efficiency in medical imaging applications.

1. Introduction

The global outbreak of the coronavirus disease (COVID-19) in 
December 2019 has profoundly impacted public health, necessitating 
the development of rapid and accurate diagnostic methods. Early 
detection of COVID-19 is crucial for isolating positive cases and pre-
venting the spread of the virus. Traditional diagnostic approaches, such 
as reverse transcription polymerase chain reaction (RT-PCR) suffer from 
delayed detection times and varying accuracy, while imaging techniques 
like X-rays and CT scans offer a faster and more detailed understanding 
of pulmonary conditions [1].

Artificial intelligence (AI), especially machine learning (ML) and 
deep learning (DL), has played an increasingly pivotal role in advancing 
medical diagnostics as well as in other scientific domains, notably in 

materials science [2–4]. Among these techniques, convolutional neural 
networks (CNNs) have demonstrated significant potential in processing 
medical images for disease detection [5]. Several studies have shown 
that CNN-based models can effectively diagnose COVID-19 from radio-
graphic images, such as X-rays and CT scans [6]. However, despite these 
advances, the secure handling of medical data remains a critical 
concern, a challenge that can be addressed through federated learning, 
which allows model training on decentralized data without compro-
mising patient privacy [7].

Despite the promise of CNN-based diagnostic tools, existing methods 
continue to face notable challenges, particularly regarding the ability to 
distinguish COVID-19 from other pulmonary conditions such as viral 
pneumonia. These challenges are often exacerbated by limited dataset 
diversity, slow inference times, and difficulties in distinguishing 
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between similar conditions [8]. Traditional deep learning models rely 
heavily on large volumes of labeled data and substantial computational 
resources, which can limit their applicability in certain healthcare en-
vironments. To address these issues, hybrid models combining deep 
feature extraction through CNNs and classification with traditional 
machine learning algorithms, such as support vector machines (SVMs) 
have been proposed [9]. Although these models show promise, they still 
face challenges related to generalization, hyperparameter tuning, and 
optimization constraints.

In this study, we propose a novel approach that integrates deep 
learning and transfer learning to enhance the accuracy and efficiency of 
automatic pulmonary condition detection from radiographic images. 
Specifically, we leverage ResNet18, a well-established deep CNN ar-
chitecture known for its high performance in image classification tasks, 
and combine it with SVM for the classification of lung conditions [10]. 
By utilizing transfer learning, we aim to improve model performance, 
reduce training time, and address challenges associated with limited 
data availability [11]. Our approach enables more accurate differenti-
ation between COVID-19, viral pneumonia, lung opacity, and healthy 
lungs, ultimately contributing to improved diagnostic outcomes. This 
study introduces a diagnostic framework that merges ResNet18-based 
deep feature extraction with SVM classification, demonstrating consid-
erable accuracy improvements when employing transfer learning [12]. 
Furthermore, we address the challenge of data privacy by suggesting 
federated learning as a viable solution to mitigate privacy concerns in 
medical AI [13]. The remainder of this paper outlines our methodology, 
presents the experimental results, and discusses the broader implica-
tions of our findings. We conclude with suggestions for future work, 
including expanding dataset diversity through augmentation techniques 
and establishing collaborations with clinical experts to further improve 
the accuracy and applicability of automatic radiographic image detec-
tion in medical settings.

Our research aims to advance the detection and differentiation of 
COVID-19, viral pneumonia, and lung opacity from healthy lungs [14,
15]. This study underscores the potential of combining DL and ML 
techniques for designing accurate and computationally efficient diag-
nostic tools, contributing to improved healthcare outcomes for pulmo-
nary diseases [16,17]. Notably, our approach aligns with the work 
presented in "Diagnosis of COVID-19 CT Scans Using Convolutional 
Neural Networks" (SN Computer Science, 5(5), 625), which demon-
strates the efficacy of CNN-based models like ResNet152 and Dense-
Net201 for diagnosing COVID-19 through CT scans. However, in 
contrast to that study, our method applies ResNet18 and SVM for 
enhanced accuracy, specifically tailored for radiographic images, which 
are more widely accessible in clinical settings. This study also explores 
hyperparameter tuning and implement techniques to address data 
imbalance, aspects that are critical for improving model reliability [18]. 
The following sections will outline our methodology, present our find-
ings, discuss their implications, and propose future directions for 
enhancing automatic radiographic image detection in the medical field 
[19]. 

• Section (I) describes the dataset, pretreatment methods, models and 
statistical analysis conducted in this study. Additionally, we provide 
a detailed background of architectural adjustments on the CNN, 
ResNet 18, VGG, SVM and transfer learning between ResNet 18- 
SVM.

• Section (II) we present two sets of results. Firstly, a comprehensive 
benchmarking of the performance of various models for multi-class 
classification from chest X-ray (CXR) images. Secondly, we explore 
the testing conducted on the custom of transfer learning approach.

• Finally, Section (III) draws conclusions and discusses future work.

2. Methodology

Machine learning is primarily used through traditional approaches to 

detect and classify various anomalies. The main issue with this approach 
is the excessive computational burden and its limited performance. In 
this section, we provide a detailed description of the data, analysis 
techniques, as well as data collection and annotation, as shown in Fig. 1. 
We then discuss the training and design of CNN architectures and 
transfer learning.

2.1. COVID-19 X-ray database

The purpose of this approach is to detect and classify COVID-19, viral 
pneumonia, and lung opacity on the chest X-ray images similar to the 
samples shown in Fig. 2(a–d). The used set of X-ray data has been 
downloaded from the Kaggle database at https://www.kaggle.com/taws 
ifurrahman/covid19-radiography-database.

2.1.1. Data augmentation
In deep learning, it is often desirable to implement precise data 

augmentation to avoid overfitting issues. This can also be mitigated 
through a well-designed data growth strategy [20,21]. The latter can be 
developed to improve sample size, thus reducing the impact of imbal-
anced data. Data augmentation is a strategy that addresses the issue of 
imbalanced data by introducing slight variations to existing data [22,
23]. For example, Soumya Ranjan Nayak et al. augmented the training 
of X-ray images by rotating them clockwise by 5◦, scaling them by 15 %, 
flipping the images horizontally, and adding Gaussian noise with a mean 
of 0 and a variance of 0.25 [24] as shown in Fig. 3 (a).

These methods do not generate new visual features in the images that 
could enhance the overall learning capabilities of the algorithm used 
and the network’s generalization capabilities. Similarly, color, texture, 
and geometry-based augmentation techniques are not as popular due to 
their various drawbacks. Although a wide variety of other interesting 
methods have been developed in the past, only geometric trans-
formations are currently commonly used. In this study, we used image 
rotation for geometric transformation to augment the chest X-ray im-
ages. While this technique allows for data diversification and improves 
classification, it also has drawbacks, such as additional memory, con-
version, and computational costs, as well as extra learning time [25]. 
The rotation augmentations have been applied to images belonging to 
the four classes shown in Table 1, which contain a smaller amount of 
data.

2.1.2. CNN architecture
In this work, CNN, which is a cutting-edge sphere of machine 

learning inspired by the human brain, was used to classify images into 
COVID-19, normal, viral pneumonia and lung opacity. Fig. 3 (b) sum-
marizes the steps of the CNN architecture for the differentiation of the 
different classes. Here, the CNN functions similarly to a human visual 
system, making it well-suited for two-dimensional images. This 
approach is particularly effective for medical image analysis, as 
demonstrated by Dhiman et al. [26], who achieved a classification ac-
curacy of 98.54 % for COVID-19 detection using ResNet101 and the J48 
algorithm. Thus, CNN analyzes images with pixel patterns to extract 
feature maps. However, the units are related to the previous layers from 
the core weights which are modified during formation through a process 
of backpropagation. Since all units use similar kernels, less weight is 
generated per convolutional layer. Indeed, the flats produced with CNN 
to achieve the objective of classifying the thoracic image are as 
following equation: 

f(x)=max(0, x) (1) 

Where, f(x) is the activation function to make the data on a linear unit in 
range 0, x. The pooling eliminated some important elements, thus 
leading to overlapped pooling 3*3. In conventional layers, as per eq. (2)
functionality, the cards were padded with convolution. The use of 
padding ensured function cards of the same dimensions. Fig. 4 (a)
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represents the hyper-parameters as well as the values to classify the four 
classes COVID-19, normal, viral pneumonia and lung opacity. CNN was 
developed through python. 

S (I, j)= (I*K)(I, j) =
∑

m

∑

n
I(m, n)K(i − m, j − n) (2) 

In the following approach, the majority is formed by the vector of the 
handmade functionality that is determined as the input of the CNN 
network instead of the direct images. The image pixels, as well as the 
vectors of correlated characteristics, bind mainly and globally. Thus, we 
adopt a merged set of features as CNN network input [27].

These are the characteristic vectors with a length of 1024 that help to 
reduce the complexity of the formation of the CNN, which is also sig-
nificant with an additional reduction in size. Similarly, this approach 
adopts a one-dimensional CNN network combining three layers of 
convolutions, one layer of pooling, one layer of abundant, and five 
layers fully connected. However, it is the PyTorch stream library 
(Tensor) that is optimized for the CNN model [5]. In the feature map 
representation, one uses a max pooling layer with a specified pooling 
size to reduce dimensionality and retain essential features.

As mentioned before, the network has four fully connected classifi-
cation layers. The overfitting in the proposed CNN network is solved via 
the Softmax function and dropout layers. The output of the one- 
dimensional proposed CNN method follows equation (3): 

Ol
k = f

(

Cl
k +

∑N1 − 1

i=1
Conv 1D

(
Xl− 1

ik , tl− 1
i
)

(3) 

Where, Cl
k, Xl− 1

ik and ‘‘f()’’ are the scalar bias of the kth neuron at the first 
layer, kernel weight from the ith neuron at layer l-1 to kth neurons at 
layer l, and the activation function, respectively. The CNN architecture 
aligns with state-of-the-art methods, such as in the work of [26], which 
highlights the importance of feature selection and optimization in 
achieving high performance in image classification tasks.

2.1.3. Deep learning: visual geometry group (VGG) model
Since 2014, the VGG model has been used for the classification of 

images. It consists of many convolutive layers activated by rectified 
linear unit (ReLU), and the kernel size of these convolutive VGG layers is 
specified in 3*3. There are also three different types of VGG models that 
have a similar structure and consist of successive layers of convolution 
and reassembly, followed by three fully connected layers. They differ 
only in the number of convolutional layers (11, 16 or 19) from which 
their name comes (VGG-11, VGG-16 and VGG-19). In this work, we used 
VGG-16 and VGG-19 for the classification of images in COVID-19, 
normal, viral pneumonia and lung opacity. The VGG-16 model had an 
accuracy of 75 % and VGG-19 had an accuracy of 77 %.

2.1.4. Deep learning: ResNet model
Residual neural network (ResNet) is a highly applied and preferred 

deep learning technique (DL) for the identification of COVID-19 X-ray 
images. The advantage of the ResNet model compared to other archi-
tectural models is that its performance does not degrade as the network 
depth increases. He et al. [28] showed that the ResNet model performs 
better in image classification than other DL architectures, indicating that 
it effectively extracts image features. On the other hand, the difference 
between ResNet-18, ResNet-34 and ResNet-50 lies in their block struc-
tures: the difference between ResNet-18 and ResNet-34 is in the number 
of repeated blocks, while the distinction between ResNet-34 and 
ResNet-50 lies in the internal composition of these blocks. In our 
approach, the ResNet-18 model was used to detect and classify 
Covid-19, normal, viral pneumonia and lung opacity. Additionally, an 
automated X-ray image analysis tool based on ResNet-18 was developed. 
The results showed an accuracy of 86 %.

2.1.5. Machine learning: SVM model
Support Vector Machine (SVM), as shown in Fig. 4 (b), allows the 

computer to learn how to perform classification and regression tasks, 
using an algorithm based on statistical learning and optimization theory, 
which increases the accuracy of predictions and completely avoids the 

Fig. 1. The overall model of the proposed detection system.

Fig. 2. Sample images from the Kaggle radiographic database.
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disadvantages of over-modification [29,30]. However, classifiers utilize 
a geometric representation of the data, where data points are plotted 
based on their characteristics or variables that influence classifications 
[31]. The role of the SVM is to define a decision boundary (linear de-
cision area) that separates datasets with the largest deviation (maximum 
margin) on each side according to the optimization technique that can 
be solved using quadratic programming [32]. In this study, we used one 
of the most widely known kernel functions, the Gaussian kernel (also 
known as the Radial Base Function (RBF)) to enhance classification 
performance [33].

2.2. Transfer learning

Transfer learning, also known as learning transfer, is a machine 
learning approach where knowledge and models learned from a specific 
task are transferred and used to improve performance on another similar 
task. Rather than building a model from scratch for each task, transfer 
learning capitalizes on the information and representations learned 

during the pre-training on a related task [34].
Fig. 5 presents the main idea behind transfer learning; the charac-

teristics and representations learned by a model on a general task can be 
useful for solving related specific tasks. For example, a pre-driven deep 
learning model on a large set of general image data, such as natural 
images, may have learned general visual features that can be reused for 
specific tasks, such as the classification of medical images.

In the context of transfer learning, there are generally two main 
approaches; Feature Extraction where the layers of a pre-driven model 
are used to extract the characteristics of the input data. These extracted 
features are then used as inputs for a new model or a task-specific ma-
chine learning algorithm [35]. Fine-tuning (Refining) refers to the pro-
cess of adjusting the weights and parameters of a pre-trained model to 
adapt it to a new, task-specific dataset, thereby enhancing its perfor-
mance for the given application. The first layers of the model can be 
frozen or kept as is, while the upper layers are adjusted to better adapt to 
new data.

Transfer learning has several advantages. It leverages pre-trained 
models trained on large datasets, which can significantly reduce the 
time and resources needed to train a task-specific model. In addition, it 
makes it possible to improve the model’s performance on limited data 
sets, by exploiting the general characteristics learned by the pre-driven 
model. However, transfer learning requires some similarity between the 
source task and the target task. The characteristics learned on the source 
task must be relevant and transferable to the target task. In addition, 
special attention should be paid to the selection of the pre-trained 
model, the management of differences in data distributions between 
tasks and the prevention of over-learning when adjusting the model.

In this study, three different transfer learning models were employed 

Fig. 3. (a) Sample results of data augmentation, (b) A basic CNN architecture for the multi-classification of COVID-19, Normal, Viral pneumonia and Lung Opacity.

Table 1 
The number of samples belonging to each category in the 
COVID-19 radiographic database.

Category Number of images

COVID-19 3616
Viral Pneumonia 1345
Normal 10192
Lung Opacity 6012
Total 21165
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to evaluate their effectiveness on the task at hand: ResNet18-SVM, 
EfficientNet-CNN, and Xception-CNN. Each model was chosen for its 
specific strengths in feature extraction and task adaptability. Transfer 
learning is widely used in many areas, including computer vision, nat-
ural language processing and speech recognition. It has demonstrated its 
effectiveness in a variety of tasks, allowing researchers and practitioners 
to use previously acquired knowledge to solve new problems with 

greater precision and efficiency [36].

2.3. Model development

In the learning phase, and to reduce the error during each iteration, 
we adopt the Adam optimization algorithm [37]. The latter is an 
adaptive learning rate algorithm that has been designed specifically for 

Fig. 4. (a) The architecture of convolution neural network, (b) Classification with the support vector machine.

Fig. 5. Illustration of the transfer learning process of ResNet18-SVM model.
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the formation of deep neural networks. Adam outperforms other opti-
mization algorithms thanks to its advantage in relatively low memory 
requirements. Adam is an adaptive learning rate method that calculates 
individual learning rates based on various parameters. The adaptive 
learning rate adjustment involves modifying the learning rate during 
training, typically decreasing it according to a predetermined schedule. 
Similarly, the Adam algorithm combines the strengths of Stochastic 
Gradient Descent with Momentum (SGDM) and Root Mean Square 
Propagation (RMSProp). Unlike RMSProp, Adam incorporates a mo-
mentum term, which helps improve convergence [38]. This algorithm 
has two decay parameters that control the deformation rates of these 
calculated moving averages. The equations for ml, vl, and θl+1 in the 
parameter update for Adam are given as follows: 

ml =B1ml− 1 + (1 − β1 )∇E(θl) (4) 

vl =B2vl− 1 + (1 − β2)
[
∇E (θl)

2] (5) 

θl+1 = θl −
αml
̅̅̅̅vl

√
+ ε (6) 

Where, m, ∇E(θ), α, β1(β2) and v are the gradient moving averages, the 
loss function, learning rate θ, gradient decay factor (squared gradient 
decay factor), and squared gradient moving averages, respectively. l 
denotes the number of iterations. For each transfer learning mod-
el—ResNet18-SVM, EfficientNet-CNN, and Xception-CNN, the Adam 
optimizer was fine-tuned to ensure the best performance for the target 
dataset. Specific hyperparameters, such as learning rate and batch size, 
were adapted to suit the architecture and task requirements. This com-
bination of adaptive learning rates and momentum ensures faster 
convergence and robust performance across various models and data-
sets.

3. Results and discussion

During the processing of medical data, it is necessary to reduce the 
number of false negatives as much as possible, especially in the case of 
infectious diseases such as COVID-19. The false negatives in diagnosing 
a patient with COVID-19 introduces not only inappropriate care and 
under-treatment, but of course incorrect medications that can affect the 
patient. Network classification performance was measured based on 
validation and test sets. Accuracy, precision, recall and F1-score were 
also investigated. In addition, the equations below demonstrate the 
calculation of metrics for each category of four classifications: 

Accuracy=
tp + tn

tp + fp + tn + fn
(7) 

Precision=
tp

tp + fp
(8) 

Recall=
tp

tp + fn
(9) 

F1 – Score=
2tp

2tp + fp + fn
(10) 

With, tp: refers to true positive classifications; fn: represents false 
negative classifications; tn: means true negative classifications, and 
finally fp represents false positive classifications. In the medical context, 
researchers particularly rely on recall sensitivity to reduce false nega-
tives. This sensitivity plays a crucial role in evaluating frameworks that 
distinguish patterns of COVID-19, normal conditions, viral pneumonia, 
and lung opacity, ensuring accurate representation within the specific 
population under consideration. Instead of solely relying on accuracy, 
which provides a general measure of classification performance, the F1- 
score offers a more reliable metric, particularly for imbalanced class 
distributions. Finally, to determine false negatives with desirable 

accuracy, both recall and F1-score must be considered.
According to the multi-class classification of normal X-ray imaging, 

COVID-19, viral pneumonia and lung opacity, we classified the infected 
cases for the latter used deep learning, for which 3616 images of the 
COVID-19, 1345 images viral pneumonia cases, 6012 images lung 
opacity and 10192 normal patient images from the dataset. The initial 
dataset is divided into two sub-datasets, one for training and one for 
testing. In the split and train test, 80 % of the images were suitable for 
training and 20 % for testing. After the classification of the data set, the 
five models (CNN, VGG-16, VGG-19, ResNet-18 and SVM) were used for 
the exposed depth learning model. Figs. 6 and 7 represent the loss and 
accuracy curves.

As demonstrated by the accuracy and loss curves, we obtained the 
best results for the four models listed. For example, we find that the best 
epoch is 12 with an accuracy of 86 % and it drops to 83.49 % in the 19th 
epoch. The best epoch for VGG-16 is the 6th with 86 %, and it goes down 
to 75.35 %. For VGG-19, the second epoch is the best with 87 % and then 
it declines to 77.22 %. And for ResNet-18, the 19th epoch is the best with 
86.18 % accuracy as plotted in Fig. 6. The training time for CNN on GPU 
was approximately 1.5 h, with a classification time of 5 min per batch. 
The same trend was observed for the VGG-16, VGG-19, and ResNet-18 
models, with all of them trained efficiently on GPU. On the other 
hand, machine learning from SVM over-processed the X-ray data and 
resulted in an accuracy of 68 % in the validation set. The SVM model was 
trained using a CPU, and it took around 2 h for training, with a classi-
fication time of 15 min per batch. The performance comparison of these 
models in our study was conducted using the following metrics: accu-
racy, recall, precision, and F1 score, as presented in Table 2.

This study focused on diagnosing COVID-19 patients and differen-
tiating them from non-COVID patients, lung opacity, and pneumonia 
based on X-ray images. X-ray imaging is a preferred medical imaging 
technique that is widely available in radiology centers and hospitals. In 
total, 21,156 images were used to train and test five developed models, 
which achieved excellent performance. From the analysis, we found that 
ResNet-18 is the best architecture for data classification due to its dual 
advantages: First, pre-processing is often unnecessary to test the viewed 
images, and the increased dataset size helps in resizing the test images. 
Then, the preformed CNN architecture is optimized using ADAM on X- 
ray images to avoid overfitting problems and to ensure optimal perfor-
mance. ResNet-18, trained on GPU, showed a training time of approxi-
mately 1 h with a classification time of 10 min per batch. In contrast to 
this study, the cited studies encountered a notable limitation: while the 
dataset was optimized for diverse objectives and deep learning meth-
odology yielded superior results, the computational load was substantial 
due to the utilization of a deep learning network (DL) aimed at 
enhancing efficiency. Optimal solutions must be well divided among all 
objectives to implement multi-objective optimization.

Similarly, in order to avoid over-learning of the model, regulariza-
tion techniques such as dropout were used. The training was carried out 
over several periods until the model’s performance reached satisfactory 
convergence. Thus, for the classification of radiographic images we used 
the SVM (Support Vector Machine) as a machine learning model. The 
characteristics extracted from the X-ray images using this model were 
used as inputs for the SVM which was evaluated by different kernel 
functions, such as the linear kernel, the Radial Basis Function (RBF) 
kernel and the polynomial kernel. We also compared the performance of 
different optimization functions, such as Stochastic Gradient Descent 
(SGD), Adam, Adagrad and RMSprop, etc., for the deep learning model 
and machine learning model. These were evaluated using measures such 
as accuracy, recall, F-measure and Precision. While deep learning 
models (CNN, VGG-16, VGG-19, and ResNet-18) provided faster classi-
fication times when trained on GPU, the SVM model, using CPU, 
required significantly more time for both training and classification.

Comparisons were also made between the different approaches to 
determine the most effective method for automatic detection of radio-
graphic images in lung conditions. Deep learning models, trained on 
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GPU, outperformed traditional machine learning models like SVM in 
terms of training time and classification speed, while the SVM model’s 
longer processing time may limit its practical use in real-time clinical 
settings. The ultimate goal of training a model is to minimize the loss 
function. Several classification parameters employed in this study are 
detailed in Table 3.

3.1. Comparison of different optimizers

In this investigation of transfer learning models for X-ray image 
recognition, we evaluated three architectures: ResNet18-SVM, Effi-
cientNet-CNN, and Xception-CNN. Each model was trained using four 
optimizers: Adam, AdaGrad, SGD, and RMSProp. The results presented 
in Table 4 highlight the performance metrics, including accuracy, recall, 

Fig. 6. Loss curve of the models CNN, VGG-16, VGG-19, and ResNet-18.

Fig. 7. Accuracy curve of the models CNN, VGG-16, VGG-19, and ResNet-18.
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precision, and F1-measure, for each model and optimizer combination.
The loss and accuracy curves for ResNet18-SVM (Fig. 8(a and b)) 

demonstrate that the model initially converges quickly after learning 
and then stabilizes. However, Adam’s optimization technique provides 
faster convergence and better results.

For the EfficientNet-CNN model, the loss analysis and classification 
accuracy curves (Fig. 9(a and b)) indicate smoother and more stable 
convergence for Adam and RMSProp optimizers, while AdaGrad dis-
played the lowest convergence rate. Similarly, the loss variation and 
accuracy trends for Xception-CNN (Fig. 10(a and b)) highlight that 
Adam consistently outperformed other optimizers, achieving the highest 
performance metrics, whereas AdaGrad exhibited slower convergence 
and reduced accuracy.

The ResNet18-SVM model demonstrated strong performance across 
all optimizers. However, the AdaGrad optimizer exhibited the worst 
convergence, as evidenced by its relatively low accuracy and F1- 
measure scores. In contrast, Adam, SGD, and RMSProp provided 
significantly better convergence and performance. The loss and accu-
racy curves for ResNet18-SVM (Fig. 8) show that the model initially 
converges rapidly, stabilizing after several iterations. Among the opti-
mizers, Adam stands out for its faster convergence and superior results, 
achieving the highest F1-measure of 0.9885. The accuracy plots for 
ResNet18-SVM (Fig. 8) highlight that AdaGrad converges poorly 
compared to the other optimizers. SGD demonstrates rapid convergence 
at the beginning of training but is surpassed by Adam in terms of sta-
bility and overall accuracy. This pattern is consistent across the other 
two models, EfficientNet-CNN and Xception-CNN, although with slight 
variations.

For the EfficientNet-CNN model, Adam consistently outperformed 
the other optimizers, achieving the highest accuracy (0.9920) and F1- 
measure (0.9887). AdaGrad and RMSProp showed competitive perfor-
mance but slightly lagged behind Adam in terms of recall and precision. 
The loss curves and accuracy curves for EfficientNet-CNN (Fig. 9(a and 
b)) reveal smoother and more stable convergence compared to 
ResNet18-SVM, especially for Adam and RMSProp optimizers.

The Xception-CNN model displayed a similar trend, with Adam again 
leading in terms of performance metrics. Its accuracy reached 0.9880, 
and its F1-measure was 0.9831, slightly lower than EfficientNet-CNN 
but still indicative of strong performance. Interestingly, while SGD 
performed well for ResNet18-SVM, it showed reduced effectiveness for 
Xception-CNN, as evidenced by a lower F1-measure (0.9762). AdaGrad, 
as observed in the other models, exhibited the slowest convergence and 
the lowest accuracy (0.9856). The loss and accuracy curves for Xception- 
CNN (Fig. 10(a and b)) illustrate these observations across the four 
optimizers.

In summary, Adam emerged as the most effective optimizer across all 

Table 2 
Performance metrics for CNN, ResNet-18, VGG-16, VGG-19, and SVM models.

Architecture Accuracy Recall Precision F1-Mesure

CNN 0.834979 0.845421 0.826357 0.833452
ResNet-18 0.861866 0.835124 0.813381 0.857154
VGG-16 0.753590 0.732511 0.767412 0.743541
VGG-19 0.772297 0.786614 0.741284 0.773541
SVM 0.681534 0.672258 0.663585 0.692418

Table 3 
Model parameter settings.

Initial weight Image Net Optimizer Adam

Batch-size 64 Learn rate 2 e− 5

Epoch 22 Loss Categorical_CrossEntropyLoss

Table 4 
Performance metrics for transfer learning models (ResNet18-SVM, EfficientNet- 
CNN, and Xception-CNN) with Adam, Adagrad, SGD, and RMSProp optimizers.

Metrics Adam Adagrad SGD RMSProp

ResNet18-SVM
Accuracy 0.9704 0.9414 0.9848 0.9604
Recall 0.9673 0.9515 0.9718 0.9773
Precision 0.9858 0.9545 0.9648 0.9727
F1-Mesure 0.9885 0.9375 0.9747 0.9847
EfficentNet-CNN
Accuracy 0.9920 0.9914 0.9919 0.9908
Recall 0.9875 0.9901 0.9810 0.9881
Precision 0.9848 0.9883 0.9902 0.9850
F1-Mesure 0.9887 0.9892 0.9886 0.9844
Xception-CNN
Accuracy 0.9880 0.9856 0.9799 0.9832
Recall 0.9829 0.9811 0.9754 0.9777
Precision 0.9857 0.9842 0.9699 0.9816
F1-Mesure 0.9831 0.9830 0.9762 0.9793

Fig. 8. (a): Accuracy curve for the ResNet18-SVM model and (b): Loss curve for the ResNet18-SVM model.
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three models, consistently delivering the highest accuracy, precision, 
recall, and F1-measure scores. EfficientNet-CNN achieved the best 
overall performance among the three architectures, with Xception-CNN 
following closely. ResNet18-SVM, while effective, displayed greater 
variability across different optimizers.

To better understand the model training process, we monitored the 
loss and accuracy curves over the course of training. The loss curves 
demonstrate that Adam facilitates rapid and smooth convergence across 
all models, while AdaGrad suffers from slower convergence and occa-
sional instability. The categorical cross-entropy loss function used in this 
study initially decreases significantly during training, eventually stabi-
lizing near zero for the best-performing optimizers (Adam, RMSProp). 
EfficientNet-CNN’s superior performance can be attributed to its ability 
to balance model complexity with efficient training, leveraging its 
unique architecture for feature extraction. Similarly, Xception-CNN’s 
depthwise separable convolutions contribute to its high accuracy and 
stability, despite slightly lower precision compared to EfficientNet-CNN. 
ResNet18-SVM, while not as robust as the other two models, benefits 

from its simplicity and computational efficiency, making it a viable 
option for specific tasks with limited resources.

3.2. Comparative analysis of several models

Numerous studies have examined the dataset in question, yet they 
have reported varying levels of accuracy. In three notable studies, the 
following results were documented: The first study categorized images 
into three classes—normal, pneumonia (including influenza-A viral 
pneumonia), and COVID-19—using CT lung images and deep learning, 
achieving an overall accuracy of 86 % [6]. The second study, which 
focused on four classes (normal, COVID-19, macro average, and 
weighted average), employed a CNN for classification and reported an 
accuracy of 85 % [39]. The third study used VGG-19 to classify images 
into three classes (normal, pneumonia, and COVID-19), attaining an 
accuracy of 83 % [7]. In contrast, our study outperforms these previous 
works by utilizing four classes and achieving an accuracy of 86.18 % 
with the ResNet-18 architecture. This indicates the effectiveness of our 

Fig. 9. (a): Accuracy analysis for the EfficientNet-CNN model and (b): Classification loss of the EfficientNet-CNN model.

Fig. 10. (a): Accuracy variation for the Xception-CNN model and (b): Loss trends for the Xception-CNN model.

H. Lamouadene et al.                                                                                                                                                                                                                          Computers in Biology and Medicine 191 (2025) 110131 

9 



approach in categorizing radiographic images more comprehensively. 
We selected the most advanced deep learning models available for 
image classification to rigorously evaluate the effectiveness of our pro-
posed models.

Further comparative analyses have been conducted on images 
derived from CT scans. One study focused on binary classification 
(normal vs. COVID-19) and achieved an impressive overall accuracy of 
97 %. Another study, aiming for automated pneumonia detection in 
COVID-19 diagnoses, utilized a fitted ResNet model that resulted in an 
overall accuracy of 95.65 %, with 92.74 % specificity and 95.90 % 
sensitivity [40]. A third study also concentrated on binary classification 
between normal and COVID-19, employing methodologies developed 
with 746 tomodensitometric images. This study reported F1 scores of 
0.98 for sensitivity, specificity, accuracy, and precision [41]. To further 
enhance our model’s performance, we recommend exploring compara-
tive studies with advanced techniques such as attention mechanisms (e. 
g., spatial and temporal attention, attention pyramid networks) and 
deformable convolution. Relevant articles for this exploration include. 

• "A triple interference removal network based on temporal and spatial 
attention interaction for forest smoke recognition in videos."

• "Smoke recognition in satellite imagery via an attention pyramid 
network with bidirectional multi-level multi-granularity feature ag-
gregation and gated fusion."

• "A label-relevance multi-direction interaction network with 
enhanced deformable convolution for forest smoke recognition."

Table 5 summarizes the results of these comparative studies, high-
lighting the potential improvements that could be achieved by inte-
grating more sophisticated methodologies.

4. Conclusion

In conclusion, we developed and evaluated deep learning methods 
and transfer learning approaches to enhance the detection and classifi-
cation of COVID-19 and other pulmonary conditions using radiographic 

images. Our first study focused on utilizing convolutional neural net-
works (CNN) and their architectures—VGG-16, VGG-19, and ResNet- 
18—alongside SVM machine learning to identify COVID-19, achieving 
accuracies of 83 % for CNN, 75 % for VGG-16, 77 % for VGG-19, 86 % 
for ResNet-18, and 68 % for SVM. These results demonstrate that CNN 
architectures, particularly ResNet-18, are effective for COVID-19 
detection. This method aims to enhance medical capabilities in areas 
with limited radiotherapy resources, facilitating early identification of 
COVID-19 to prevent severe consequences such as death. Despite these 
promising results, our method has limitations, including variable accu-
racies across models and the presence of false negatives and positives. 
These limitations highlight the need for further improvements in the 
models for greater robustness and reliability. Our research provides 
valuable insights for researchers and practitioners in the fields of pattern 
recognition and medical imaging. The proposed methods can be adapted 
and extended to other medical domains requiring precise image classi-
fication, thus contributing to the improvement of medical diagnostics 
and patient care. In our second study, we employed transfer learning 
with a ResNet18-SVM model for multiclass classification of radiographic 
images. This model, pre-trained on the ImageNet dataset, was optimized 
with various algorithms such as Adam, AdaGrad, SGD, and RMSProp, 
achieving classification rates of 98 % for SGD, 97 % for Adam, 96 % for 
RMSProp, and 94 % for AdaGrad, outperforming traditional methods. 
Additionally, we explored two other transfer learning models, 
EfficientNet-CNN and Xception-CNN, which also demonstrated impres-
sive performance with accuracies of 99.20 % for EfficientNet-CNN and 
98.80 % for Xception-CNN. These results further validate the effective-
ness of transfer learning in improving classification performance for 
radiographic image recognition.

Future work will focus on several areas: exploring hybrid features to 
improve accuracy by reducing false negatives and positives; enhancing 
the completeness and representativeness of radiographic image data to 
cover a greater diversity of clinical cases; developing specialized 
recognition algorithms to further advance medical image recognition 
capabilities; and conducting clinical studies to evaluate the effectiveness 
and acceptability of the proposed methods in real-world settings. These 
combined efforts underscore the importance of leveraging advanced 
machine learning techniques to improve the accuracy and efficiency of 
medical diagnoses, particularly in the context of limited resources and 
critical health emergencies. By working on these fronts, we hope to 
significantly contribute to the enhancement of diagnostic and treatment 
capabilities for pulmonary conditions worldwide.
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Table 5 
Comparison of COVID-19 detection studies using CT images across various 
models and classes.

STUDY Classes Used model Accuracy Ref

1 Normal, COVID-19, 
lung opacity, and 
viral pneumonia

CNN 83.49 % This 
workResNet-18 86.18 %

VGG-16 75.35 %
VGG-19 77.22 %
SVM 68.15 %

2 Normal, pneumonia 
(IAVP), COVID-19.

Deep learning 86 % [6]

3 Normal, COVID-19, 
Macro average, 
Weithed average.

CNN 85 % [39]

​ Normal, 
pneumonia, COVID- 
19.

VGG-19 83 % [7]

4 Normal, COVID-19, 
lung opacification, 
viral pneumonia.

ResNet-19 86.18 %

​ Normal, COVID-19 Deep Learning 97 %
5 Normal, COVID-19 ResNet 95 % accuracy, 

95.65 % sensitivity, 
92.74 % specificity, 
95.9 % precision

[40]

6 Normal, COVID-19 Classifier based 
on test sample

F1: 0.98, Accuracy: 
0.98, Sensitivity: 
0.98, Specificity: 
0.97

[41]

7 COVID-19 Non- 
COVID

DenseNet201 98.73 % 91.67 % [18]
ResNet152 97.23 % 89.45 %
VGG16 91.25 % 85.34 %
InceptionV3 98.38 % 92.33 %
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the work reported in this paper.
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